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E
vidence is mounting of Fickian yet
non-Gaussian Brownian diffusion in
multiple systems.1�9 In other words,

even though it is commonly presumed that
the random displacements that objects
undergo during Brownian motion follow a
normal (Gaussian) distribution, it has been
observed that displacement distribution
can be non-Gaussian when themean square
displacement remains linear in time. This is
counterintuitive, as it seems to contradict
the predicted Gaussian behavior at long
times but has been reported repeatedly in
independent systems: particles diffusing on
phospholipid tubules,1 particles diffusing in
entangled actin,1 liposomes diffusing in en-
tangled actin,2 polymer chains diffusing on
a surface,3,4 and particles diffusing among
swimming cells.5 A theoretical rationale has
been provided that heterogeneity not suffi-
ciently averaged out on a short time and
length scale might underpin this behavior.2

But a limitation of the experimental studies
is that they concerned unusual systems with
complicated specific interactions, making
their generality difficult to assess.
Seeking to test the idea in a system more

generally representative, we have designed
the following experiments involving colloi-
dal suspensions, with several considerations
in mind. First, as specific interactions can
introduce heterogeneity and interfere with

diffusion, we sought to achieve hard-sphere
interactions. Perfect hard-sphere behavior is
now recognized impossible to fully realize in
the laboratory, but the system we selected
appears to come as close to this as can
be done.10,11 Second, to emulate the locally
varying microenvironments that have been
hypothesized to underpin this behavior,2

we sought to work in suspensions whose
concentration could be varied over a
wide range. To implement this, we track
with nanometer resolution the trajectories
of colloidal-sized tracer particles embedded
in a suspension of larger matrix particles
(Figure 1a). The particle�particle interac-
tions are simply hard sphere and hydro-
dynamic. The size ratio of 1:8 allows smaller
particles to diffuse through the interstices
between larger particles, no matter how
closely the larger ones are packed. Evaluat-
ing displacement distribution over three
decades in probability, we show non-
Gaussian behavior while the diffusion is
Fickian. Hydrodynamic interactions have
been proposed to differ from spot to spot
in crowded colloidal environments,12,13

which might present heterogeneity to
moving particles as they diffuse and lead
to non-Gaussian displacement, although
the underlying mechanism would differ
from conventional glassy systems with dy-
namic heterogeneity.
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ABSTRACT We scrutinize three decades of probability density displacement distribution in

a simple colloidal suspension with hard-sphere interactions. In this index-matched and density-

matched solvent, fluorescent tracer nanoparticles diffuse among matrix particles that are eight

times larger, at concentrations from dilute to concentrated, over times up to when the tracer

diffuses a few times its size. Displacement distributions of tracers, Gaussian in pure solvent,

broaden systematically with increasing obstacle density. The onset of non-Gaussian dynamics is

seen in even modestly dilute suspensions, which traditionally would be assumed to follow classic Gaussian expectation. The findings underscore, in

agreement with recent studies of more esoteric soft matter systems, the prevalence of non-Gaussian yet Fickian diffusion.
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Diffusion of this sort is common in nature and
technology. Examples include water diffusing through
sand beds (a geology problem),14 solvents diffusing
through polymer gels (a materials problem),15 and car-
bon diffusing through steel (a metallurgy problem).16

A vast theoretical and experimental literature on diffu-
sion and hydrodynamics focuses on the effective dif-
fusivity.17�26 To the best of our knowledge, these prior
studies did not address the displacement distributions
that are of primary concern here.

RESULTS

Figure 1a shows a schematic representation of the
experiment. We embedded trace quantities of fluor-
escent poly(methyl methacrylate) (PMMA) particles
(∼0.001% volume fraction,∼0.28 μmdiameter labeled
with rhodamine dye, purchased from Edinburgh Re-
search & Innovation Ltd.) within a matrix of PMMA
particles that were optically transparent (∼2.2 μm
diameter, same source), suspended in the standard
solvent mixture of cyclohexyl bromide and decalin
to achieve index-matching and density-matching.27

Seeking to come as close as possible to a fluid with
hard-sphere interactions, we included 1 mg mL�1

tetrapentylammonium chloride to screen residue
charges on the particles, which gives a Debye length
of ∼0.1 μm.10,11 Fluorescence images were taken in
epifluorescence mode at room temperature on a Zeiss
observer.Z1microscopewith 63� air objective, using an
EMCCD camera (Andor iXon) and data acquisition at 20
frames per second. Using home-developed software28

the resolution of particle position was <30 nm. Five
matrix volume fractions (φ) were studied: φ = 0, 0.15,
0.30, 0.45, and 0.55.
A typical raw data set amounted to about a million

tracer positions as a function of time from ∼15 000
particles at each φ. The mean squared displacement
(MSD) is shown in Figure 1b, plotted on log�log scales
against delay time. One sees that initially it is propor-
tional to delay time, but the slope lessens slightly
starting at∼1 s, on theorder of a few collisions between
tracer and the matrix as the tracer moves through
interstitial space between matrix particles, whereas
Fickian diffusion where MSD is strictly linear with delay
time is observed when the tracer particles diffuse in
pure solvent. The implied transition length is consistent
with the surface distance between matrix particles (see
Table S1 of the Supporting Information). The diffusion
coefficient was calculated as ÆΔx2æ = 2Dt in the linear
regime, where Δx is displacement in a given time
interval and the brackets denote time-average and
ensemble-average. This was slightly less than in pure
solvent (inset of Figure 2b), in qualitative agreement
with theoretical predictions taking into account the size
difference between probe and matrix particles.29

As this large data set included information about
fluctuations about the averages, next the non-Gaussian
parameter was calculated, R = (ÆΔx4æ/3ÆΔx2æ2) � 1.
Plotting this against time (Figure 1c), one observes that
R = 0 within experimental uncertainty in pure solvent;
R > 0 otherwise; R increases with φ; and R is nearly
constant over the time window. It is true that non-
Gaussian behavior is seen in glassy and supercooled

Figure 2. How the displacement probability distribution
scales with time. (a) Displacement probability distributions
over 3 orders of magnitude plotted logarithmically against
displacement, Δx, with ordinate normalized to the max-
imum, at a volume fraction of 0.45, at times 0.1, 0.2, and
0.3 s. Dashed line is a Gaussianfit to the small displacements
at 0.1 s. (b) The same ordinate as left, plotted against
Δx/(2DΔt)1/2, where D is the diffusivity from the slope of
the mean-squared displacement versus time and the area
under each curve is normalized to unity. Note the collapse
of the data.

Figure 1. The experimental system. (a) Schematic illustra-
tion of small fluorescent probe particles diffusing among
larger matrix particles, both of them index and density
matched to the solvent. The size ratio is 1:8. (b) Mean-
squared displacement of the probe plotted against time on
log�log scales at matrix volume fraction φ = 0, 0.15, 0.30,
0.45, and 0.55, from top to bottom. From the dashed lines,
D is inferred from the equation ÆΔx2æ = 2Dt. (Inset) D, units
of μm2/s, is plotted againstφ. The red curve,D=D0(1� φ)1.5,
is a theoretical prediction taking into account the size
difference between probe and matrix particles.29 The error
bars show the uncertainty in measuring absolute volume
fraction due to the possible interparticle interaction being
less than ideal hard spheres. The error bars of the ordinate
are less than the symbol size. (c) Non-Gaussian parameter,
R = ((ÆΔx4æ)/(3ÆΔx2æ2) � 1), plotted against time for five
values of φ. (d) Non-Gaussian parameter plotted against
particle mobility. The subpopulations of particles are
binned based on time-averaged displacement over ÆΔtæ =
0.1 s. Dashed line is a guide to the eye. “þ” is from the
simulated Gaussian trajectory. 0%, black diamonds; 15%,
brown squares; 30%, greenupside-down triangles; 45%, red
triangles; 55%, blue circles.
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liquid systems, but those systems are fundamentally
different because they display a splitting of mobility
between different subpopulations, which is called
dynamic heterogeneity.30�33 Here we observe no such
split of mobility (Figure S2 of the Supporting
Information). We calculated the non-Gaussian parame-
ter for subpopulations separated according to their
different mobility; R was the same regardless of mobi-
lity of that subpopulation, suggesting that this splitting-
mobility hypothesis could not explain the data
(Figure 1d). Trivially, the R values of subpopulations
were smaller than those of the ensemble because the
formerpresented anarrower displacementdistribution.
This we confirmed by simulating trajectories with
strictly Gaussian statistics. Also, the non-Gaussian pa-
rameter in our system has a small value of ∼0.1�0.3,
whereas for glassy systems it is typically∼1�6, an order
of magnitude larger.
This data set was large enough to evaluate the full

displacement distribution, including rare events, eval-
uated over three decades of probability. First, consider
obstacles presented by thematrix at φ = 0.45. Figure 2a
shows relative probability plotted logarithmically
against displacement, evaluated for various time lags.
The full distributions show consistent deviations from
Gaussian but lack any tendency to show an exponen-
tial tail of displacement distribution, differing from
the pattern typical for supercooled liquids, which is
Gaussian at small displacements and exponential at
large displacements.33,34 Strikingly, they collapse with
normalized displacement Δx0 = Δx/(2Dt)1/2, consistent
with their Fickian displacement.
These distributions, broader than Gaussian, are com-

pared for different volume fraction in Figure 3a, which
compares distributions as a function of the respective
Δx0 with the area under each curve normalized to unity.
In pure solvent, perfect Gaussian behavior was ob-
served. For stricter comparison to Gaussian behavior,
the data were normalized to the Gaussian curve. Plot-
ting this ratio against Δx0 on a linear scale (Figure 3b),
one sees more explicitly that discrepancies were
most pronounced for the largest displacements, those
displacements whose probability was lowest. It is
noteworthy that the displacement distributions devi-
ate from Gaussian behavior already at φ = 0.15, which
traditionally would be considered dilute. Given that the
matrixmay crystallize atφ= 0.55,35,36 onemight expect
this to interfere, but we see no significant change
in nanoparticle diffusivity nor a split of mobility into
fast and slow subpopulations at this concentration
(Figure S2 of the Supporting Information). One possible
explanation is that the actual concentration is less than
this; it is reported that the absolute value of φ can
shift(3�6% in this system.10,11 Regardless of why, this
volume fraction presents simply a systematic exten-
sion of tendencies already apparent when the matrix
concentration is less. Further, there is no suggestion of

lack of equilibration, as neither aging nor change of
nanoparticle mobility is seen over the course of the
observation (Figure S3 of the Supporting Information).
Deviations from Gaussian are more prominent with
increasing φ, however. Note also the curious feature
that all curves appear to intersect at the same two
values of Δx0, although no interpretation of this em-
pirical observation is offered at this time.
Physically, the greater heterogeneity suggested by

the broader distribution of displacement could reflect
local obstacle concentrations that differ from the
average φ according to the local configurations of
matrix particles. This is why, reflecting locally relatively
crowded and sparse obstacles, wewould observemore
small displacements and large displacements than
Gaussian; the fewer intermediate-sized displacements
would then be a consequence of normalizing the area
of distribution to unity. These trends become more
pronounced with increasing φ. Such heterogeneity
was supported by further analysis. First, individual
trajectories were inspected. Their time-averagedmean
square displacement was also found to become in-
creasingly heterogeneouswithφ (Figure S2 of Support-
ing Information). Second, adjacent steps in time were
found to be correlated inmagnitude; that is, large steps
were likely to be followed by large steps and vice versa.
This gave a U-shaped conditional displacement mag-
nitude after a given displacement, centering around
zero displacement. This trend grew systematically with
increasing φ, whereas in pure solvent this bias was not
observed (Figure S4 of the Supporting Information).
In the course of this study, we reanalyzed already-
published data from this laboratory1,2 and found the
same qualitative trend of the conditional displacement,

Figure 3. Dependence on volume fraction. (Top) Displace-
ment distributions plotted logarithmically against displace-
ment normalized by (2DΔt)1/2 at Δt = 0.2 s for different
volume fractions of matrix particles: φ = 0 (black), 0.15
(brown), 0.30 (green), 0.45 (red), and 0.55 (blue), compared
to Gaussian distribution (orange line), (2/π)1/2 e�x2/2. Area
under each curve is normalized to 1. (Bottom) For each
volume fraction, the ratio of the observed probability
distribution to the Gaussian is plotted against normalized
displacement.
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although the analysis was notmade at the time of those
publications about other systems that are Fickian yet
non-Gaussian.
Matrix particles diffused slowly in this experiment

(Supporting Information, Movie S2) but were not im-
mobile as in systems with quenched disorder.37,38

Then it is reasonable to expect that the smaller tracer
particles experienced spatially varying environments,
the latter fluctuating more slowly. Given that tracer
particles diffused only a fraction of the matrix particle
size over the experimental time window, the local
environment experienced by different tracer particles
differed from point to point according to the random
arrangement and the local hydrodynamics of the
slowly fluctuating matrix particles. Static obstacles on
surfaces have shown to produce anomalous dynamics
in 2D,8,9 and the current system shares these features
qualitatively in 3D. It seems that the observed non-
Gaussian displacement distributions essentially reflect
heterogeneity not averaged out on the time and
length scales that we study.

DISCUSSION

Though non-Gaussian diffusion is sometimes
identified in supercooled or glassy systems,30�34 the
accepted view of glassy behavior seems to differ
significantly. In the trajectories of particles in glassy
systems, it is common to analyze the persistence and
exchange times (here, the persistence time is the first-
passage time for a given particle and exchange time
is the waiting time for subsequent passage), and it is
found that they decouple typically.39 The persistence
and exchange time distributions in this system, plotted
against time lag in Figure 4 (top), display no decou-
pling. In fact, these two distributions appear to be
strictly identical, as one sees from their ratio plotted
against time in Figure 4 (bottom).
We now compare our data to the popular contin-

uous time random walk (CTRW) and fractional Brow-
nian motion (FBM) models to describe anomalous
diffusion.40,41 Recently, velocity correlation functions
have been suggested to distinguish these processes.
We observe a velocity anticorrelation at short time
calculated from frame-based displacement correlation,
contrasting to unbounded CTRW predictions that do
not show negative values due to the absence of
correlation between different jumps (Figure S1 of the
Supporting Information). It is true that we find certain
dynamics features consistent with FBM models: first,
the slight velocity anticorrelation at short time; distri-
bution of the ergodicity breaking parameter centered
around 1, which is an indicator of the individual particle
mobility (Figures S1, S2 of the Supporting Information).
However, FBM models require a Hurst exponent less
than 0.5 to yield velocity anticorrelation, which simul-
taneously leads to subdiffusion with an MSD exponent
of less than 1, contrasting the Fickian diffusion we

characterized here with MSD linearly growing with
time. Physically, the assumptions in CTRW or FBM
models are not validated in the current system, how-
ever. We do not observe the trapping and discrete
jumps in dynamics assumed in CTRW models. We
do not observe the memory effects assumed in FBM
models.

CONCLUSIONS

The novelty of the present experiments is to demon-
strate non-Gaussian yet Fickian diffusion in a very
simple system, with physical interactionsmuch simpler
than the somewhat esoteric previous systems (actin
networks, phospholipid tubules, vesicles), in which this
pattern was earlier identified.1,2 Here themechanism is
probably that hydrodynamics experienced by diffusing
particles differs from spot to spot as recognized qua-
litatively long ago12,13 without exploring how this
would modify the probability distribution of displace-
ment and how the slowly varying local hydrodynamics
due to the slowly fluctuating matrix perturbs diffusion.
The degree of heterogeneity characterized here lies
between one extreme of the simplest fluid of all (no
matrix obstacles, φ = 0) and the other extreme of harsh
obstacle obstructions (supercooled liquids and glasses).
Our observations of more frequent large steps than
the Gaussian assumption can be expected to influence
the outcome of events whose essence lies in their
rarity: dynamics determined by first-passage time,
rare-event-initiated chain reactions, diffusion-limited
reaction, triggering, and signaling. The phenomenol-
ogy reported here can be expected to be general, as
colloidal suspensions are so common.
The new findings presented here underscore the

prominence of non-Gaussian diffusion despite linear
mean square displacement. While to observe this in

Figure 4. Persistence and exchange time analysis. Top panel:
distribution of persistence (solid) and exchange (open) times,
compared for φ = 0 (black), 0.15 (brown), 0.30 (green), 0.45
(red), and 0.55 (blue). Threshold distance d is set to 1 μm.
Nodecouplingwas seen for d=0.5�5 μm.Lines areguides to
the eye. Bottom panel: ratio of the distribution of persistence
to exchange time at each time lag, plotted with a cutoff of
P(log t) > 0.05. Dashed line denoting a ratio of 1 is shown for
comparison.
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our crowded situation of highest volume fraction may
be easy to understand physically, we emphasize that
the tendency starts even when the volume fraction is
so low that it might reasonably be considered dilute
and expected to follow Gaussian dynamics. The find-
ings underscore, in agreement with recent studies
of more esoteric soft matter systems, the seeming
ubiquity of non-Gaussian yet Fickian diffusion. This

physical situation was previously considered by
much earlier analysis of effective diffusivity,17�26 but
this literature did not address theoretically the dis-
placement distributions that are of primary concern
here, and the single-particle data presented here
were inaccessible to experimentalists at that time.
We interpret these results as finding new life in this
problem.

METHODS
Trace amounts, ∼0.001% in volume fraction, of fluorescent

PMMA particles 0.28 μm in diameter (purchased from Edin-
burgh Research & Innovation Ltd.) were dispersed evenly into
nonfluorescent PMMA particles 2.2 μm in diameter, in a suspen-
sion medium of an index-matched and density-matched mix-
ture of cyclohexyl bromide (98%, Aldrich) and decalin (99%,
Aldrich), with 1 mg/mL tetrapentylammonium chloride added
to screen residual charge between particles. The sample cell was
assembled using coverslips as spacers sandwiched between
a glass slide and an imaging coverslip. First, the particles were
centrifuged in nearly density-matched solvent to achieve a
random close packing of ∼64%; then they were diluted with
the density-matched solvent mixture to the desired lesser
volume fraction. Samples of 0%, 15%, 30%, 45%, and 55% in
volume fraction were used in this study. The colloidal dispersion
was inserted into the sample cell through an inlet hole drilled
through the glass slide and rapidly sealed with a molten
mixture of galactose and dextrose (1:1). The samplewas allowed
to equilibrate on the microscope stage for a few hours, and
epifluorescence microscopy imaging was carried out at a focal
plane at least 30 μm away from the surface. Spatial resolution
of ∼30 nm was achieved using a 63� air objective (NA = 0.75)
with 1.6� postmagnification and image analysis software
written in-house.

Conflict of Interest: The authors declare no competing
financial interest.

Acknowledgment. This work was supported by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences,
under Award DEFG02-02ER46019.

Supporting Information Available: Details on comparison
with CTRW and FBM models (Figures S1 and S2), estimates of
time scales, movies taken with a fluorescence microscope to
show probe and matrix dynamics. This material is available free
of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES
1. Wang, B.; Kuo, J.; Bae, S. C.; Granick, S. When Brownian

Diffusion Is Not Gaussian. Nat. Mater. 2012, 11, 481–485.
2. Wang, B.; Anthony, S. M.; Bae, S. C.; Granick, S. Anomalous

yet Brownian. Proc. Nat. Acad. Sci. U.S.A. 2009, 106, 15160–
15164.

3. Skaug, M. J.; Mabry, J.; Schwartz, D. K. Intermittent Molec-
ular Hopping at the Solid-Liquid Interface. Phys. Rev. Lett.
2013, 110, 256101.

4. Yu, C.; Guan, J.; Chen, K.; Bae, S. C.; Granick, S. Single-
Molecule Observation of Long Jumps in Polymer Adsorp-
tion. ACS Nano 2013, 7, 9735–9742.

5. Kurtuldu, H.; Guasto, J. S.; Johnson, K. A.; Gollub, J. P.
Enhancement of Biomixing by Swimming Algal Cells in
Two-Dimensional Films. Proc. Nat. Acad. Sci. U.S.A. 2011,
108, 10391–10395.

6. Kim, J.; Kim, C.; Sung, B. J. Simulation Study of Seemingly
Fickian but Heterogeneous Dynamics of Two Dimensional
Colloids. Phys. Rev. Lett. 2013, 110, 047801.

7. Goohpattader, P. S.; Chaudhury, M. K. Diffusive Motion
with Nonlinear Friction: Apparently Brownian. J. Chem.
Phys. 2010, 133, 024702.

8. He, K.; Khorasani, F. B.; Retterer, S. T.; Thomas, D. K.;
Conrad, J. C.; Krishnamoorti, R. Diffusive Dynamics of
Nanoparticles in Arrays of Nanoposts. ACS Nano 2013, 7,
5122–5130.

9. Skinner, T. O. E.; Schnyder, S. K.; Aarts, D. G. A. L.; Horbach, J.;
Dullens, R. P. A. Localization Dynamics of Fluids in Random
Confinement. Phys. Rev. Lett. 2013, 111, 128301.

10. Royall, C. P.; Poon, W. C. K.; Weeks, E. R. In Search of
Colloidal Hard Spheres. Soft Matter 2013, 9, 17–27.

11. Poon, W. C. K.; Weeks, E. R.; Royall, C. P. On Measuring
Colloidal Volume Fractions. Soft Matter 2012, 8, 21–30.

12. Ando, T.; Skolnick, J. Crowding and Hydrodynamic Inter-
actions Likely Dominate in Vivo Macromolecular Motion.
Proc. Nat. Acad. Sci. U.S.A. 2010, 107, 18457–18462.

13. Guo, G.; Liu, G.; Thompson, K. E. Numerical Analysis of
the Effects of Local Hydrodynamics on Mass Transfer in
Heterogeneous PorousMedia. Chem. Eng. Commun. 2003,
190, 1641–1660.

14. Badv, K.; Faridfard, M. R. Laboratory Determination of
Water Retention and Diffusion Coefficient in Unsaturated
Sand. Water Air Soil Pollut. 2005, 161, 25–38.

15. Andersson, D.; Engberg, D.; Swenson, J.; Svanberg, C.;
Howells, W. S.; Borjesson, J. Diffusive Solvent Dynamics
in a Polymer Gel Electrolyte Studied by Quasielastic
Neutron Scattering. J. Chem. Phys. 2005, 122, 234905.

16. Simonovic, D.; Ande, C. K.; Duff, A. I.; Syahputra, F.; Sluiter,
M. H. F. Diffusion of Carbon in bcc Fe in the Presence of Si.
Phys. Rev. B 2010, 81, 054116.

17. Mu, D.; Liu, Z.-S.; Huang, C.; Djilali, N. Prediction of the
Effective Diffusion Coefficient in Random Porous Media
Using the Finite Element Method. J. Porous Mater. 2007,
14, 49–54.

18. Moreno, A. J.; Colmenero, J. Relaxation Scenarios in a
Mixture of Large and Small Spheres: Dependence on the
Size Disparity. J. Chem. Phys. 2006, 125, 164507.

19. Weissberg, H. L. Effective Diffusion Coefficient in Porous
Media. J. Appl. Phys. 1963, 34, 2636–2639.

20. Kluijtmans, S. G. J. M.; Philipse, A. P. First in Situ Determina-
tion of ConfinedBrownian TracerMotion inDense Random
Sphere Packings. Langmuir 1999, 15, 1896–1898.

21. Kim, I. C.; Torquato, S. Diffusion of Finite-Sized Particles in
Porous Media. J. Chem. Phys. 1992, 96, 1498–1503.

22. Chang, R.; Jagannathan, K.; Yethiraj, A. Diffusion of Hard
Sphere Fluids in Disordered Media: A Molecular Dynamics
Simulation Study. Phys. Rev. E 2004, 69, 051101.

23. Saxton, M. J. Wanted: A Positive Control for Anomalous
Subdiffusion. Biophys. J. 2012, 103, 2411–2422.

24. Bourg, I. C.; Sposito, G. Connecting the Molecular Scale to
the Continuum Scale for Diffusion Processes in Smectite-
Rich Porous Media. Environ. Sci. Technol. 2010, 44, 2085–
2091.

25. Zhao, Q.; Papadopoulos, P. Modeling and Simulation of
Liquid Diffusion through a Porous Finitely Elastic Solid.
Comput. Mech. 2013, 52, 553–562.

26. Batchelor, G. K. Brownian Diffusion of Particles with Hydro-
dynamic Interaction. J. Fluid Mech. 1976, 74, 1–29.

27. Wiederseiner, S.; Andreini, M.; Epely-Chauvin, G.; Ancey, C.
Refractive-Index and Density Matching in Concentrated
Particle Suspensions: A Review. Exp. Fluids 2011, 50, 1183–
1206.

A
RTIC

LE



GUAN ET AL . VOL. 8 ’ NO. 4 ’ 3331–3336 ’ 2014

www.acsnano.org

3336

28. Anthony, S. M.; Granick, S. Image Analysis with Rapid and
Accurate 2DGaussian Fitting. Langmuir 2009, 25, 8152–8160.

29. Douglas, J. F.; Leporini, D. Obstruction Model of the
Fractional Stokes-Einstein Relation in Glass-Forming
Liquids. J. Non-Cryst. Solids 1998, 235�237, 137–141.

30. Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz,
D. A. Three-Dimensional Direct Imaging of Structural
Relaxation Near the Colloidal Glass Transition. Science
2000, 287, 627–631.

31. Kegel, W. K.; van Blaaderen, A. Direct Observation of
Dynamical Heterogeneities in Colloidal Hard-Sphere
Suspensions. Science 2000, 287, 290–293.

32. Hedges, L. O.; Jack, R. L.; Garrahan, J. P.; Chandler, D.
Dynamic Order-Disorder in Atomistic Models of Structural
Glass Formers. Science 2009, 323, 1309–1313.

33. Chaudhuri, P.; Berthier, L.; Kob, W. Universal Nature
of Particle Displacements Close to Glass and Jamming
Transitions. Phys. Rev. Lett. 2007, 99, 060604.

34. Mandal, S.; Chikkadi, V.; Nienhuis, B.; Raabe, D.; Schall, P.;
Varnik, F. Single-Particle Fluctuations and Directional
Correlations in Driven Hard-Sphere Glasses. Phys. Rev. E
2013, 88, 022129.

35. Royall, C. P.; Louis, A. A.; Tanaka, J. Measuring Colloidal
Interactionswith ConfocalMicroscopy. J. Chem. Phys.2007,
127, 044507.

36. Yethiraj, A.; van Blaaderen, A. A Colloidal Model System
with an Interaction Tunable from Hard Sphere to Soft and
Dipolar. Nature 2003, 421, 513–517.

37. Kurzidim, J.; Coslovish, D.; Gerhard, K. Dynamic Arrest of
Colloids in Porous Environments: Disentangling Crowding
and Confinement. J. Phys.: Condens. Matter 2011, 23,
234122.

38. Kim, K.; Miyazaki, K.; Saito, S. Slow Dynamics, Dynamic
Heterogeneities, and Fragility of Supercooled Liquids
Confined in Random Media. J. Phys.: Condens. Matter
2011, 23, 234123.

39. Hedges, L. O.; Maibaum, L.; Chandler, D.; Garrahan, J. P.
Decoupling of Exchange and Persistence Times in
Atomistic Models of Glass Formers. J. Chem. Phys. 2007,
127, 211101.

40. Burov, S.; Jeon, J.-H.; Metzler, R.; Barkai, E. Single Particle
Tracking in Systems Showing Anomalous Diffusion: the
Role of Weak Ergodicity Breaking. Phys. Chem. Chem. Phys.
2011, 13, 1800–1812.

41. Magdziarz, M.; Weron, A.; Burnecki, K.; Klafter, J. Fractional
Brownian Motion Versus the Continuous-Time Random
Walk: A Simple Test for Subdiffusive Dynamics. Phys. Rev.
Lett. 2009, 103, 180602.

A
RTIC

LE


